--- /dev/null
+rrqnet(8)
+=========
+:doctype: manpage
+:revdate: {sys:date "+%Y-%m-%d %H:%M:%S"}
+:COLON: :
+:EQUALS: =
+
+NAME
+----
+rrqnet - Packet tunneling over UDP, multiple channels
+
+SYNOPSIS
+--------
+*rrqnet* [ OPTIONS ] _port_ ( _remote_ [*-i* _mac_]* )*
+
+DESCRIPTION
+-----------
+*rrqnet* is a bi-directional networking plug that channels Ethernet
+packets between a UDP port and either a tap interface or standard
+input/output. It is configured on the command line by declarations of
+the remotes it may communicate with.
+
+OPTIONS
+-------
+
+Note that any options must be given in the fixed order:
+
+ [-v] [-4] [-B n] [-T n] [-m mcast] [-t tap]
+
+*-v*::
+
+This tells *rrqnet* to log its operation on +stderr+. Use *-vv* to
+also see logs about connections and messaging, or *-vvv* for *rrqnet*
+to be insanely verbose on +stderr+ about virtually everything.
+
+*-4*::
+
+This directs *rrqnet* to use an ipv4-only socket for its UDP. By
+default it opens a dual ipv4/ipv6 socket and internally it then uses
+address mapping for ipv4 (i.e. the ::ffff/96 prefix).
+
+*-B* _n_::
+
+This sets the number of receive buffers *rrqnet* should use. The
+default is computed to be twice the number of dispatch threads (see
+*-T* below). Receive buffers are pre-allocated and recycled.
+
+*-T* _n_::
+
+This sets the number of dispatch threads *rrqnet* should use. The
+default is 5. The (additional) main thread handles packet reception,
+where it immediately puts received packets into the buffer queue which
+is serviced by the dispatch threads for optional decryption, dispatch
+decision, optional encryption and delivery.
+
+*-m* _mcast_::
+
+This tells *rrqnet* to open an ipv4 UDP multicast channel as an
+additional remote channel.
+
+*-t* _tap_::
+
+This tells *rrqnet* to open the nominated tap (the _tap_ interface
+name) as local channel.
+
+* When a tap is used, stdin and stdout are closed, but stderr remains
+open.
+
+* Without a *-t* argument, *rrqnet* will merely operate as a virtual
+switch among its channels.
+
+* With "*-*" as tap name, *rrqnet* will use stdin/stdout as local
+networking channel in a format compatible with VDE plugs.
+
+_address-block[:port][=cryptfile]_ [ *-i* _mac_[,_mac_]* ]::
+
+Remotes are declared as +ipv4+ or +ipv6+ network address blocks
+optionally with port and transport encryption key file pathname, and
+optionally with specific MAC addresses (in a comma separated list) to
+ignore. Note that an ipv6 address block might need surrounding square
+brackets, to avoid confusion with the port number.
+
+DETAILED DESCRIPTION
+--------------------
+
+The intended use of *rrqnet* is to provide VPN (virtual private
+network) connectivity between hosts. Each VPN host runs its own
+*rrqnet* daemon to channel the traffic to/from tap interfaces on the
+hosts via UDP messaging between the hosts.
+
+*rrqnet* is prepared for almost any network layout, even including a
+collection of fully connected hosts, although the more common is a
+"star' formation. See the EXAMPLES section for inspiration.
+
+*rrqnet* includes logic aiming to protect against broadcast cycles.
+Howewer it does not have the more advanced spanning tree logic that is
+offered by bridge interfaces. In general it's best to avoid cycles and
+rather run several *rrqnet* on a host with their local taps connected
+in a bridge interface.
+
+By default *rrqnet* opens an +ipv6+ socket on the given port. This
+mode handles both +ipv6+ and +ipv4+ remotes with +ipv4+ remotes
+handled by means of ipv6-mapped address translations. If *-4* is
+given, *rrqnet* opens an +ipv4+ socket instead, and it cannot then
+have +ipv6+ remotes.
+
+A *rrqnet* daemon delivers the packets received from the local end,
+i.e., the _tap_ or _stdio_, to known remote ends according the
+targeted MAC addresses and established remote channels. Likewise,
+packets from remotes are delivered to the local end or to other
+remotes according to the targeted MAC addresses. If a packet is an
+Ethernet broadcast, it is delivered to all (known) channels except the
+one it came from.
+
+If *rrqnet* is started without *-t* option it will operate like an
+Ethernet switch that provides connectivity among its +UDP+ channels
+without involving the host network other than for the tunneling.
+
+
+REMOTE DECLARTIONS
+~~~~~~~~~~~~~~~~~~
+
+.ipv4 address block
+
+This format declares remotes by +ipv4+ address, with optional network
+prefix length (0-32), optional port (1-65535) and/or optional key file
+pathname. *updtap* will accept packets from sources that match. If the
+network prefix length, +n+, is omitted or given as 32, and a port is
+given, then the remote is taken as an _uplink_.
+
+.matching ipv4 uplink and downlink
+====
+----
+[1.2.3.4]# rrqnet -t vpn0 2300 5.6.7.1:2300=/sec/vpn0.key
+[5.6.7.1]# rrqnet -t vpn0 2300 1.2.3.0/24:2300=/sec/vpn0.key
+----
+====
+
+.plain ipv6 address block
+
+This format declares remotes by ipv6 address, with optional network
+prefix length (0-128) and/or optional key file pathname. *updtap* will
+accept packets from sources that match. This format (without square
+brackets) is without port number part, and it thus only declares a
+prefix mask for allowed sender hosts.
+
+.ipv6 address block within square brackets
+
+This format declares remotes by ipv6 address, with optional network
+prefix length (0-128) within square brackets, then optionally a port
+number and/or an optional key file pathname. *updtap* will accept
+packets from sources that match. If the network prefix length, +n+, is
+omitted, or given as 128, and a port number is given, then it declares
+an _uplink_.
+
+.matching ipv6 uplink and downlink
+====
+----
+[fd::4]# rrqnet -t vpn0 2300 '[fe::1:4]:2300=/sec/vpn0.key'
+[fe::1:4]# rrqnet -t vpn0 2300 '[fd::/120]:2300=/sec/vpn0.key'
+----
+====
+
+Remotes are declarations to match the source IP addresses for UDP
+traffic. It is either a full host and port address, or an address
+block with or without port number. A full network address and port
+(e.g +[fe::1:4]:2300+ of example 2) declares an _uplink_ that the
+declaring *rrqnet* daemon will establish and maintain by means of
+regular heartbeat messaging. An address block declaration defines the
+mask for allowed incoming connections, aka _downlinks_, that teh
+declaring dameon expects are maintained as uplinks by the remote
+*rrqnet* daemons.
+
+The *-i* option, if used for a remote declaration, is followed by a
+comma separated list of the MAC addresses to ignore on the associated
+channel. The *rrqnet* daemon will then just drop any packet with those
+MAC addresses (whether source or destination) on the remotes of the
+channel.
+
+MULTICAST CHANNEL
+-----------------
+
+With the *-m* option, the *rrqnet* daemon also listens for packets on
+the declared ipv4 multicast address. It is then treated as a separate,
+persistent remote channel.
+
+A multicast channel is declared using the format:
+*ipv4:port{=keyfile}*. I.e. it includes the multicast ipv4 address,
+the port number (1-65535), and optionally a key file pathname. The
+multicast channel is an additional communication channel, but anything
+received on it will be treated as being from the multicast IP rather
+than the actual source IP.
+
+.multicast example without other remotes
+====
+----
+# rrqnet -m 244.0.2.1:2000 -t vpn0
+----
+====
+
+The multicast channel is compatible with QEMU multicast socket.
+
+TRANSPORT ENCRYPTION
+--------------------
+
+Transport encryption is added to a channel by menas of using a shared
+key. This is a sizable file, say 1 Mb, of binary data that is used for
+scrambling the network packets. For example, 1 Mb random data is fine.
+
+.preparing 1 Mb key file with random content
+====
+----
+dd if=/dev/random of=/sec/keyfile bs=1M count=1
+----
+====
+
+The key file needs to be copied to all hosts.
+
+A channel that has a key file is declared by appending it to the
+channel declaration, as in the following example.
+
+.another example of a downlink with encryption
+====
+----
+[10.0.0.1]# rrqnet -v -t tap0 1400 10.2.0.0/16:1400=/sec/keyfile
+----
+====
+
+That declaration says that all channels with hosts of ipv4 address
++10.2.0.0/16+, port 1400, use the file +/sec/keyfile+ for transport
+encryption.
+
+
+FURTHER EXAMPLES
+----------------
+
+Simple rrqnet set up (ipv6)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+This is an example set up for connecting two hosts with *rrqnet*,
+without transport encryption. We pretend these hosts are mutually
+reachable with ipv6 addresses +fe::2+ and +fe::1:3+ respectively, and
+we want to use the ipv6 network +fd::1000:0/120+ over *rrqnet*. A
+nominal set up might then be as follows:
+
+.simple rrqnet set up (ipv6)
+====
+----
+[fe::2]# ip tuntap add tap0 mode tap
+[fe::2]# ifconfig tap0 fd::1000:10/120 up
+[fe::2]# rrqnet -v -t tap0 1400 '[fe::1:3]:1400' &
+--
+[fe::1:3]# ip tuntap add tap0 mode tap
+[fe::1:3]# ifconfig tap0 fd::1000:20/120 up
+[fe::1:3]# rrqnet -v -t tap0 1400 '[fe::2]:1400' &
+----
+====
+
+Thus, the host +fe::2+ is set up with a tap, +tap0+, having +ipv6+
+address and net +fd::1000:10/120+, and a *rrqnet* daemon for the tap
+and UDP port +1400+ that uplinks to a remote *rrqnet* at +fe::1:3+
+port +1400+. Similarly, the host +fe::1:3+ is set up with a tap
++tap0+, having +ipv6+ address and net +fd::1000:20/120+, and a *rrqnet*
+daemon for the tap and UDP port +1400+ that uplinks to a remote
+*rrqnet* at +fe::2+ port +1400+.
+
+This example also needs ipv6 address resolution set up, which uses the
+MAC addresses of the two taps. Let's say it's +02:00:00:00:00:02+ for
++tap0+ on +fe::2+ and +04:00:00:00:00:04+ for +tap0+ on +fe::1:3+.
+Then address resolution is established with the following:
+
+.example of ipv6 address resolution set up
+====
+----
+[fe::2]# ip neigh add fd::1000:20 dev tap0 lladdr 04:00:00:00:00:04
+--
+[fe::1:3]# ip neigh add fd::1000:10 dev tap0 lladdr 02:00:00:00:00:02
+----
+====
+
+Simple rrqnet set up (ipv4)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+This is an example set up for connecting two hosts with *rrqnet*,
+without transport encryption. We pretend these hosts are mutually
+reachable with ipv4 addresses +10.0.0.1+ and +192.168.0.1+
+respectively, and we want to use the ipv4 network +10.100.100.0/24+
+over *rrqnet*. A nominal set up might be as follows:
+
+.Simple rrqnet set up (ipv4)
+====
+----
+[10.0.0.1]# ip tuntap add tap0 mode tap
+[10.0.0.1]# ifconfig tap0 10.100.100.1/24 up
+[10.0.0.1]# rrqnet -v -t tap0 1400 192.168.0.1:1400 &
+--
+[192.168.0.1]# ip tuntap add tap0 mode tap
+[192.168.0.1]# ifconfig tap0 10.100.100.2/24 up
+[192.168.0.1]# rrqnet -v -t tap0 1400 10.0.0.1:1400 &
+----
+====
+
+Thus, the host +10.0.0.1+ is set up with a tap, +tap0+, having ipv4
+address and net +10.100.100.1/24+, and a *rrqnet* daemon for the tap
+and UDP port +1400+ that uplinks to a remote *rrqnet* at +192.168.0.1+
+port +1400+. Similarly, the host +192.168.0.1+ is set up with a tap
++tap0+, having +ipv4+ address and net +10.100.100.2/24+, and a
+*rrqnet* daemon for the tap and UDP port +1400+ that uplinks to a
+remote *rrqnet* at +10.0.0.1+ port 1400.
+
+The kernel automagically performs ipv4 address resolution to learn the
+MAC addresses associated with the remote ipv4 addresses through the
+taps.
+
+rrqnet set up through NAT
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If one of the hosts, say +192.168.0.1+ is behind a NAT router with
+different IP, say, a dynamic IP on the net +10.2.0.0/16+, we need a
+different set up. In this scenario, the first host would be set up as
+a "server" and the second a client that would utilize the router's NAT
+function for return traffic. The set up would be as follows:
+
+.rrqnet set up through NAT
+====
+----
+[10.0.0.1]# ip tuntap add tap0 mode tap
+[10.0.0.1]# ifconfig tap0 10.100.100.1 up
+[10.0.0.1]# rrqnet -v -t tap0 1400 10.2.0.0/16:1400 &
+--
+[192.168.0.1]# ip tuntap add tap0 mode tap
+[192.168.0.1]# ifconfig tap0 10.100.100.2 up
+[192.168.0.1]# rrqnet -v -t tap0 1400 10.0.0.1:1400 &
+----
+====
+
+Thus, the "server" is set up to allow connections from any host on the
+network +10.2.0.0/16+, port 1400, while the "client" is set up the
+same way as in the simple example above. The client will establish and
+uphold the connection by virtue of its 30 second "heart beat", and
+return traffic will be channeled via the router's NAT function.
+
+Note that the server sees the _external_ IP of the client and not its
+_internal_ IP. The server's *rrqnet* therefor has a remote declaration
+to allow messages from that external IP, and in the example case, even
+an address block of a 16 bit common prefix (the choice of a 16 bit
+prefix is merely for the sake of this example).
+
+Multiple client hosts
+~~~~~~~~~~~~~~~~~~~~~
+
+In a "client-server" set up, there can be any number of "client"
+hosts. However, the "clients" behind a common NAT router must then use
+distinct ports as otherwise the router will be confused about the
+return traffic.
+
+With multiple remote channels, a *rrqnet* daemon serves as a network
+switch that forwards traffic in between the channels as well as to and
+from the "server" tap. The daemon also forwards Ethernet broadcasts
+out on all established channels in support of ARP messaging.
+
+Further, a *rrqnet* daemon may be both a "server" with down-link
+channels, and a "client" with one or more up-link channels, all at the
+same time. Such a daemon forwards traffic between all established
+channels by means of the Ethernet addresses, as well as broadcasts
+onto all channels
+
+Stdio network
+~~~~~~~~~~~~~
+The *rrqnet* daemon may be set up to use standard input/output rather
+than a tap for local network traffic. This operation mode has some
+rare use cases, such as linking two *rrqnet* daemons, or connecting to
+a VDE network. For example:
+
+.stdio network between two updtap plugs
+====
+----
+# dpipe rrqnet 1400 0.0.0.0/0=keyfile0 = rrqnet 1401 0.0.0.0/0=keyfile1 &
+----
+====
+
+That example set up would make a connection between the two "server"
+daemons operating at different UDP ports, accepting messages from any
+ipv4 host, where port +1400+ has +keyfile0+ for transport encryption,
+and +1401+ has +keyfile1+ for transport encryption.
+
+Another example would be for connecting the *rrqnet* traffic to a VDE
+network via a +vde_plug+ as in the following example:
+
+.stdio network to a vde_plug
+====
+----
+# dpipe rrqnet 1400 0.0.0.0/0 = vde_plug /tmp/vde1.ctl &
+----
+====
+
+Note that *rrqnet* and +vde_plug+ use compatible stdio packet
+representation.
+
+NOTES
+-----
+
+The UDP receiver in *rrqnet* accepts packets from the specified remote
+ends only, but it doesn't perform any payload verification. Messages
+smaller than 12 bytes are taken as "heartbeats", and larger messages
+are first decrypted as applicable, then treated as Ethernet messages
+and delivered according to their destination MAC addresses. *rrqnet*
+versions after 0.2.3 adds some data to the Ethernet packet in the UDP
+communication.
+
+*rrqnet* bridges its connections, and forwards Ethernet broadcasts to
+all known end-points except the incoming one. The input logic takes
+care of avoiding broadcast cycles. Still, the safe advice is that one
+should avoid a cyclic *rrqnet* set up except for single-hop cliques of
+host groups.
+
+*rrqnet* does not have any Spanning Tree Logic (STL), but only some
+simple timing logic based on binding MAC addresses to remotes. That
+binding is sticky for a short time: 6s for broadcast and 20s for
+unicast. Any packet received during that time from the same MAC
+address via another remote is dropped. Also, a downlink without
+incoming traffic for 3 minutes is considered stale.
+
+*rrqnet* sends a "heartbeat" of an empty UDP message on its uplinks
+every 30 seconds. This is done in order to maintain the channel with
+the remote end without actually binding any MAC address.
+
+When the local input is a tap, *rrqnet* closes standard input and
+standard output, but not standard error, before entering the packet
+handling loop.
+
+Using +-t -+ for stdin/stdout packet traffic is compatible with
++vde_plug+.
+
+SEE ALSO
+--------
+*rrqnet-cron.sh(8)* - Management script to uphold a *rrqnet* plug.
+
+*udptun(8)* - Packet tunneling over UDP.
+
+*vde_plug(1)* - Virtual Distributed Ethernet plug.
+
+AUTHOR
+------
+Ralph Rönnquist <ralph.ronnquist@gmail.com>
--- /dev/null
+// This program is a UDP based tunneling of stdin/out Ethernet packets.
+//
+// A rrqnet program is a bi-directional networking plug that channels
+// packets between a UDP port and stdin/out. It is configured on the
+// command line with channel rules that declares which remotes it may
+// communicate with. Allowed remotes are specified in the format
+// "ip[/n][:port][=key]", to indicate which subnet and port to accept,
+// and nominating the associated keyfile to use for channel
+// encryption.
+//
+// The program maintains a table of actualized connections, as an
+// association between MAC addresses and IP:port addresses. This table
+// is used for resolving destination for outgoing packets, including
+// the forwarding of broadcasts.
+//
+
+#include <errno.h>
+#include <fcntl.h>
+#include <linux/if.h>
+#include <linux/if_tun.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+#include <sys/stat.h>
+#include <sys/timeb.h>
+#include <sys/types.h>
+#include <time.h>
+#include <unistd.h>
+
+#include "htable.h"
+#include "queue.h"
+
+//// Data structures
+
+// "Private Shared Key" details.
+struct PSK {
+ char *keyfile;
+ unsigned int seed; // Encryption seed
+ unsigned char *key; // Encryption key
+ unsigned int key_length; // Encryption key length
+};
+
+// Compacted IP address ipv4/ipv6
+struct CharAddr {
+ int width; // 4=ipv4 and 16=ipv6
+ union {
+ unsigned char bytes[16];
+ struct in_addr in4;
+ struct in6_addr in6;
+ };
+};
+
+// Details of channel rules.
+struct Allowed {
+ char *source; // Orginal rule
+ struct CharAddr addr;
+ unsigned int bits; // Bits of IP prefix
+ unsigned short port; // Port (0=any)
+ struct PSK psk; // Associated key
+ htable ignored_mac; // MAC to ignore by this spec
+};
+
+// Details of actualized connections.
+struct Remote {
+ struct SockAddr uaddr;
+ struct Allowed *spec; // Rule being instantiated
+ struct timeb rec_when; // Last received packet time, in seconds
+};
+
+// Details of an interface at a remote.
+struct Interface {
+ unsigned char mac[6]; // MAC address used last (key for by_mac table)
+ struct timeb rec_when; // Last packet time, in seconds
+ struct Remote *remote;
+};
+
+// Maximal packet size .. allow for jumbo frames (9000)
+#define BUFSIZE 10000
+
+typedef struct _PacketItem {
+ QueueItem base;
+ int fd;
+ struct SockAddr src;
+ ssize_t len;
+ unsigned char buffer[ BUFSIZE ];
+} PacketItem;
+
+// heartbeat interval, in seconds
+#define HEARTBEAT 30
+#define HEARTBEAT_MILLIS ( HEARTBEAT * 1000 )
+
+// Macros for timing, for struct timeb variables
+#define TIMEB_MILLIS(TM) (((int64_t) (TM)->time * 1000) + (TM)->millitm )
+#define DIFFB_MILLIS(TM1,TM2) ( TIMEB_MILLIS(TM1) - TIMEB_MILLIS(TM2) )
+
+// RECENT(T,M) is the time logic for requiring a gap time (in
+// milliseconds) before shifting a MAC to a new remote. The limit is
+// 6000 for broadcast and 20000 for unicast.
+#define RECENT(T,M) ((M) < ((T)? 6000 : 20000 ))
+
+// VERYOLD_MILLIS is used for discarding downlink remotes whose latest
+// activity is older than this.
+#define VERYOLD_MILLIS 180000
+
+
+////////// Variables
+
+// Allowed remote specs are held in a table sorted by IP prefix.
+static struct {
+ struct Allowed **table;
+ unsigned int count;
+} allowed;
+
+// Actual remotes are kept in a hash table keyed by their +uaddr+
+// field, and another hash table keps Interface records for all MAC
+// addresses sourced from some remote, keyed by their +mac+ field. The
+// latter is used both for resolving destinations for outgoing
+// packets, and for limiting broadcast cycles. The former table is
+// used for limiting incoming packets to allowed sources, and then
+// decrypt the payload accordingly.
+static int hashcode_uaddr(struct _htable *table,unsigned char *key);
+static int hashcode_mac(struct _htable *table,unsigned char *key);
+static struct {
+ htable by_mac; // struct Interface hash table
+ htable by_addr; // struct Remote hash table
+} remotes = {
+ .by_mac = HTABLEINIT( struct Interface, mac, hashcode_mac ),
+ .by_addr = HTABLEINIT( struct Remote, uaddr, hashcode_uaddr )
+};
+
+#define Interface_LOCK if ( pthread_mutex_lock( &remotes.by_mac.lock ) ) { \
+ perror( "FATAL" ); exit( 1 ); }
+
+#define Interface_UNLOCK if (pthread_mutex_unlock( &remotes.by_mac.lock ) ) { \
+ perror( "FATAL" ); exit( 1 ); }
+
+#define Interface_FIND(m,r) \
+ htfind( &remotes.by_mac, m, (unsigned char **)&r )
+
+#define Interface_ADD(r) \
+ htadd( &remotes.by_mac, (unsigned char *)r )
+
+#define Interface_DEL(r) \
+ htdelete( &remotes.by_mac, (unsigned char *) r )
+
+#define Remote_LOCK if ( pthread_mutex_lock( &remotes.by_addr.lock ) ) { \
+ perror( "FATAL" ); exit( 1 ); }
+
+#define Remote_UNLOCK if ( pthread_mutex_unlock( &remotes.by_addr.lock ) ) { \
+ perror( "FATAL" ); exit( 1 ); }
+
+#define Remote_FIND(a,r) \
+ htfind( &remotes.by_addr, (unsigned char *)a, (unsigned char **) &r )
+
+#define Remote_ADD(r) \
+ htadd( &remotes.by_addr, (unsigned char *) r )
+
+#define Remote_DEL(r) \
+ htdelete( &remotes.by_addr, (unsigned char *) r )
+
+#define Ignored_FIND(a,m,x) \
+ htfind( &a->ignored_mac, m, (unsigned char **)&x )
+
+#define Ignored_ADD(a,x) \
+ htadd( &a->ignored_mac, (unsigned char *)x )
+
+// Input channels
+static int stdio = 0; // Default is neither stdio nor tap
+static char *tap = 0; // Name of tap, if any, or "-" for stdio
+static int tap_fd = 0; // Also used for stdin in stdio mode
+static int udp_fd;
+static int threads_count = 0;
+static int buffers_count = 0;
+
+// Setup for multicast channel
+static struct {
+ struct ip_mreqn group;
+ struct SockAddr sock;
+ int fd;
+ struct PSK psk;
+} mcast;
+
+// Flag to signal the UDP socket as being ipv6 or not (forced ipv4)
+static int udp6 = 1;
+
+// Flag whether to make some stderr outputs or not.
+// 1 = normal verbosity, 2 = more output, 3 = source debug level stuff
+static int verbose;
+
+// Note: allows a thread to lock/unlock recursively
+static pthread_mutex_t crypting = PTHREAD_MUTEX_INITIALIZER;
+
+// Note: allows a thread to lock/unlock recursively
+static pthread_mutex_t printing = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
+
+#define PRINTLOCK \
+ if ( pthread_mutex_lock( &printing ) ) { perror( "FATAL" ); exit(1); }
+
+#define PRINTUNLOCK \
+ if ( pthread_mutex_unlock( &printing ) ) { perror( "FATAL" ); exit(1); }
+
+#define PRINT( X ) { PRINTLOCK; X; PRINTUNLOCK; }
+
+#define VERBOSEOUT(fmt, ...) \
+ if ( verbose >= 1 ) PRINT( fprintf( stderr, fmt, ##__VA_ARGS__ ) )
+
+#define VERBOSE2OUT(fmt, ...) \
+ if ( verbose >= 2 ) PRINT( fprintf( stderr, fmt, ##__VA_ARGS__ ) )
+
+#define VERBOSE3OUT(fmt, ...) \
+ if ( verbose >= 3 ) PRINT( fprintf( stderr, fmt, ##__VA_ARGS__ ) )
+
+// A buffer for reading stdin in fragmented way, to allow outgoing
+// packets during the reading of stdin packets, if it's fragmented.
+static struct {
+ unsigned char buffer[ BUFSIZE ]; // Packet data
+ unsigned int end; // Packet size
+ unsigned int cur; // Amount read so far
+} input;
+
+// The actual name of this program (argv[0])
+static unsigned char *progname;
+
+// Compute a hashcode for the given SockAddr key
+static int hashcode_uaddr(
+ __attribute__((unused)) struct _htable *table,unsigned char *key)
+{
+ struct SockAddr *s = (struct SockAddr *) key;
+ key = (unsigned char*) &s->in;
+ unsigned char *e = key + ( ( s->in.sa_family == AF_INET )?
+ sizeof( struct sockaddr_in ) :
+ sizeof( struct sockaddr_in6 ) );
+ int x = 0;
+ while ( key < e ) {
+ x += *(key++);
+ }
+ return x;
+}
+
+// Compute a hashcode for the given MAC addr key
+static int hashcode_mac(struct _htable *table,unsigned char *key) {
+ int x = 0;
+ int i = 0;
+ if ( table->size == 256 ) {
+ for ( ; i < 6; i++ ) {
+ x += *(key++);
+ }
+ return x;
+ }
+ uint16_t *p = (uint16_t *) key;
+ for ( ; i < 3; i++ ) {
+ x += *( p++ );
+ }
+ return x;
+}
+
+// Make a text representation of bytes as ipv4 or ipv6
+static char *inet_nmtoa(unsigned char *b,int w) {
+ static char buffer[20000];
+ int i = 0;
+ char * p = buffer;
+ if ( w == 4 ) {
+ sprintf( p,"%d.%d.%d.%d", b[0], b[1], b[2], b[3] );
+ } else if ( w == 16 ){
+ sprintf( p,
+ "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x",
+ b[0], b[1], b[2], b[3],
+ b[4], b[5], b[6], b[7],
+ b[8], b[9], b[10], b[11],
+ b[12], b[13], b[14], b[15] );
+ } else {
+ VERBOSE3OUT( "HEX data of %d bytes\n", i );
+ for ( ; i < w && i < 19000; i++, p += 3 ) {
+ sprintf( p, "%02x:", b[i] );
+ }
+ if ( w > 0 ) {
+ *(--p) = 0;
+ }
+ }
+ return buffer;
+}
+
+// Form a MAC address string from 6 MAC address bytes, into one of the
+// 4 static buffer, whose use are cycled.
+static char *inet_mtoa(unsigned char *mac) {
+ static char buffer[4][30];
+ static int i = 0;
+ if ( i > 3 ) {
+ i = 0;
+ }
+ sprintf( buffer[i], "%02x:%02x:%02x:%02x:%02x:%02x",
+ mac[0], mac[1], mac[2], mac[3], mac[4], mac[5] );
+ return buffer[i++];
+}
+
+// Form a socket address string from Sockaddr, into one of the
+// 4 static buffer, whose use are cycled.
+static char *inet_stoa(struct SockAddr *a) {
+ static char buffer[1000];
+ static char out[4][1000];
+ static int i = 0;
+ if ( i > 3 ) {
+ i = 0;
+ }
+ if ( a->in.sa_family == AF_INET ) {
+ sprintf( out[i], "%s:%d",
+ inet_ntop( AF_INET, &a->in4.sin_addr, buffer, 100 ),
+ ntohs( a->in4.sin_port ) );
+ } else if ( a->in.sa_family == AF_INET6 ) {
+ sprintf( out[i], "[%s]:%d",
+ inet_ntop( AF_INET6, &a->in6.sin6_addr, buffer, 100 ),
+ ntohs( a->in6.sin6_port ) );
+ } else {
+ sprintf( out[i], "<tap/stdio>" );
+ }
+ return out[i++];
+}
+
+// Debugging: string representation of an Allowed record.
+static char *show_allowed(struct Allowed *a) {
+ static char buffer[20000];
+ if ( a == 0 ) {
+ sprintf( buffer, "{tap/stdio}" );
+ } else {
+ sprintf( buffer, "%hd (%d) %s %p",
+ a->port, a->bits, inet_nmtoa( a->addr.bytes, a->addr.width ),
+ a->psk.key );
+ }
+ return buffer;
+}
+
+// Recognize uplink specification
+static int is_uplink(struct Allowed *a) {
+ return a->bits == (unsigned int) ( a->addr.width * 8 ) && a->port != 0;
+}
+
+// Add a new Interface for a Remote. If non-null, the interface is
+// also added to the interface table.
+static struct Interface *add_interface(unsigned char *mac,struct Remote *r) {
+ struct Interface *x = calloc( 1, sizeof( struct Interface ) );
+ memcpy( x->mac, mac, sizeof( x->mac ) );
+ x->remote = r;
+ if ( r ) {
+ Interface_ADD( x );
+ }
+ return x;
+}
+
+// Add a new remote for a given address and spec.
+static struct Remote *add_remote(struct SockAddr *a,struct Allowed *s) {
+ struct Remote *r = calloc( 1, sizeof( struct Remote ) );
+ if ( a != 0 ) {
+ memcpy( &r->uaddr, a, sizeof( r->uaddr ) );
+ }
+ r->spec = s;
+ VERBOSE2OUT( "add_remote %s from spec: %s\n",
+ inet_stoa( &r->uaddr ),
+ ( s == 0 )? ( (a == 0)? "{tap/stdio}" : "{multicast}" )
+ : show_allowed( s ) );
+ Remote_ADD( r );
+ return r;
+}
+
+// Add a new ignored interface on a channel
+static int add_ignored(struct Allowed *link,unsigned char *mac) {
+ struct Interface *x = add_interface( mac, 0 );
+ if ( x == 0 ) {
+ return 1; // error: out of memory
+ }
+ Ignored_ADD( link, x );
+ return 0;
+}
+
+// Parse ignored interfaces
+// Comma separated list of MAC addresses
+static int parse_ignored_interfaces(char *arg,struct Allowed *link) {
+ int a, b, c, d, e, f, g;
+ while ( *arg ) {
+ if ( sscanf( arg,"%x:%x:%x:%x:%x:%x%n",&a,&b,&c,&d,&e,&f,&g ) != 6 ) {
+ // Not a mac addr
+ return 1;
+ }
+ if ( (a|b|c|d|e|f) & ~0xff ) {
+ return 1; // some %x is not hex
+ }
+ unsigned char mac[6] = { a, b, c, d, e, f };
+ if ( add_ignored( link, mac ) ) {
+ // Out of memory ??
+ return 1;
+ }
+ VERBOSEOUT( "Ignoring: %s on channel %s\n",
+ inet_mtoa( mac ), link->source );
+ arg += g;
+ if ( *arg == 0 ) {
+ break;
+ }
+ if ( *(arg++) != ',' ) {
+ return 1; // Not comma separated
+ }
+ }
+ return 0;
+}
+
+//** IP address parsing utility
+// Clear bits after <bits>
+static void clearbitsafter(struct CharAddr *a,unsigned int bits) {
+ unsigned int max = a->width * 8;
+ int i;
+ for ( i = a->width; i < 16; i++ ) {
+ a->bytes[ i ] = 0;
+ }
+ for ( i = a->width - 1; i >= 0; i--, max -= 8 ) {
+ if ( max - 8 < bits ) {
+ break;
+ }
+ a->bytes[ i ] = 0;
+ }
+ if ( i >= 0 && max >= bits ) {
+ a->bytes[ i ] &= ( 0xFF << ( bits - max ) );
+ }
+}
+
+//** IP address parsing utility
+// Find the PSK for the given +file+ in the +loaded+ table (of +count+ size)
+static struct PSK *findLoadedKeyfile(char *file,struct PSK *loaded,int count) {
+ VERBOSE3OUT( "find %s\n", file );
+ for ( count--; count >= 0; count-- ) {
+ if ( strcmp( file, loaded[ count ].keyfile ) ) {
+ VERBOSE3OUT( "found %d\n", count );
+ return &loaded[ count ];
+ }
+ }
+ VERBOSE3OUT( "found nothing\n" );
+ return 0;
+}
+
+//** IP address parsing utility
+// Load a key file into dynamically allocated memory, and update the
+// given PSK header for it.
+static void loadkey(struct PSK *psk) {
+ static struct PSK *loaded = 0;
+ static int count = 0;
+ if ( psk->keyfile == 0 ) {
+ return;
+ }
+ struct PSK *old = findLoadedKeyfile( psk->keyfile, loaded, count );
+ if ( old ) {
+ memcpy( psk, old, sizeof( struct PSK ) );
+ return;
+ }
+ int e;
+ unsigned char *p;
+ int n;
+ struct stat filestat;
+ psk->keyfile = strdup( psk->keyfile );
+ int fd = open( (char*) psk->keyfile, O_RDONLY );
+ psk->seed = 0;
+ if ( fd < 0 ) {
+ perror( "open key file" );
+ exit( 1 );
+ }
+ if ( fstat( fd, &filestat ) ) {
+ perror( "stat of key file" );
+ exit( 1 );
+ }
+ psk->key_length = filestat.st_size;
+ if ( psk->key_length < 256 ) {
+ fprintf( stderr, "Too small key file: %d %s\n", psk->key_length,
+ psk->keyfile );
+ exit( 1 );
+ }
+ psk->key = malloc( psk->key_length );
+ if ( psk->key == 0 ) {
+ fprintf( stderr, "Cannot allocate %d bytes for %s\n",
+ psk->key_length, psk->keyfile );
+ exit( 1 );
+ }
+ e = psk->key_length;
+ p = psk->key;
+ while ( ( n = read( fd, p, e ) ) > 0 ) {
+ e -= n;
+ p += n;
+ }
+ close( fd );
+ if ( e != 0 ) {
+ fprintf( stderr, "Failed loading key %s\n", psk->keyfile );
+ exit( 1 );
+ }
+ for ( e = 0; (unsigned) e < psk->key_length; e++ ) {
+ psk->seed += psk->key[ e ];
+ }
+ if ( psk->seed == 0 ) {
+ fprintf( stderr, "Bad key %s; adds up to 0\n", psk->keyfile );
+ exit( 1 );
+ }
+ count++;
+ if ( loaded ) {
+ loaded = realloc( loaded, ( count * sizeof( struct PSK ) ) );
+ } else {
+ loaded = malloc( sizeof( struct PSK ) );
+ }
+ memcpy( &loaded[ count-1 ], psk, sizeof( struct PSK ) );
+ VERBOSE3OUT( "%d: %s %d %p %d\n", count-1, psk->keyfile, psk->seed,
+ psk->key, psk->key_length );
+}
+
+//** IP address parsing utility
+// Fill out a CharAddr and *port from a SockAddr
+static void set_charaddrport(
+ struct CharAddr *ca,unsigned short *port,struct SockAddr *sa)
+{
+ memset( ca, 0, sizeof( struct CharAddr ) );
+ ca->width = ( sa->in.sa_family == AF_INET )? 4 : 16;
+ if ( ca->width == 4 ) {
+ memcpy( &ca->in4, &sa->in4.sin_addr, 4 );
+ *port = ntohs( sa->in4.sin_port );
+ } else {
+ memcpy( &ca->in6, &sa->in6.sin6_addr, 16 );
+ *port = ntohs( sa->in6.sin6_port );
+ }
+}
+
+//** IP address parsing utility
+// Fill out a SockAddr from a CharAddr and port
+static void set_sockaddr(struct SockAddr *sa,struct CharAddr *ca,int port) {
+ memset( sa, 0, sizeof( struct SockAddr ) );
+ if ( ca->width == 4 ) {
+ sa->in4.sin_family = AF_INET;
+ sa->in4.sin_port = htons( port );
+ memcpy( &sa->in4.sin_addr, &ca->in4, 4 );
+ } else {
+ sa->in6.sin6_family = AF_INET6;
+ sa->in6.sin6_port = htons( port );
+ memcpy( &sa->in6.sin6_addr, &ca->in6, 16 );
+ }
+}
+
+//** IP address parsing utility
+// Capture an optional port sub phrase [:<port>]
+static int parse_port(char *port,struct Allowed *into) {
+ into->port = 0;
+ if ( port ) {
+ *(port++) = 0;
+ int p;
+ if ( sscanf( port, "%d", &p ) != 1 || p < 1 || p > 65535 ) {
+ // Bad port number
+ return 1;
+ }
+ into->port = p;
+ }
+ return 0;
+}
+
+//** IP address parsing utility
+// Capture an optional bits sub phrase [/<bits>]
+static int parse_bits(char *bits,int max,struct Allowed *into) {
+ into->bits = max;
+ if ( bits ) {
+ *(bits++) = 0;
+ int b;
+ if ( sscanf( bits, "%d", &b ) != 1 || b < 0 || b > max ) {
+ return 1;
+ }
+ into->bits = b;
+ }
+ return 0;
+}
+
+//** IP address parsing utility
+// Parse a command line argument as a declaration of an allowed
+// remote into the given <addr>.
+// Return 0 if ok and 1 otherwise
+// Formats: <ipv4-address>[/<bits>][:<port>][=keyfile]
+// Formats: <ipv6-address>[/<bits>][=keyfile]
+// Formats: \[<ipv6-address>[/<bits>]\][:<port>][=keyfile]
+static int parse_allowed(char *arg,struct Allowed *into) {
+ static char buffer[10000];
+ int n = strlen( arg );
+ if ( n > 9000 ) {
+ return 1; // excessively large argument
+ }
+ strcpy( buffer, arg );
+ into->source = arg;
+ char * keyfile = strchr( buffer, '=' );
+ if ( keyfile ) {
+ *(keyfile++) = 0;
+ into->psk.keyfile = keyfile;
+ }
+#define B(b) b, b+1, b+2, b+3
+ if ( sscanf( buffer, "%hhu.%hhu.%hhu.%hhu", B(into->addr.bytes) ) == 4 ) {
+#undef B
+ // ipv4 address
+ into->addr.width = 4;
+ if ( parse_port( strchr( buffer, ':' ), into ) ) {
+ fprintf( stderr, "bad port\n" );
+ return 1;
+ }
+ if ( parse_bits( strchr( buffer, '/' ), 32, into ) ) {
+ fprintf( stderr, "bad bits\n" );
+ return 1;
+ }
+ return 0;
+ }
+ // ipv6 address
+ char * address = buffer;
+ into->port = 0;
+ if ( *buffer == '[' ) {
+ // bracketed form, necessary for port
+ char *end = strchr( buffer, ']' );
+ if ( end == 0 ) {
+ return 1; // bad argument
+ }
+ address++;
+ *(end++) = 0;
+ if ( *end == ':' && parse_port( end, into ) ) {
+ return 1;
+ }
+ }
+ into->addr.width = 16;
+ if ( parse_bits( strchr( address, '/' ), 128, into ) ) {
+ return 1;
+ }
+ if ( inet_pton( AF_INET6, address, into->addr.bytes ) != 1 ) {
+ return 1; // Bad IPv6
+ }
+ return 0;
+}
+
+//** IP address parsing utility
+// Add a new channel spec into the <allowed> table
+// spec == 0 for the tap/stdio channel
+static struct Allowed *add_allowed(char *spec) {
+ struct Allowed *into = calloc( 1, sizeof(struct Allowed) );
+ htable x = HTABLEINIT( struct Interface, mac, hashcode_mac );
+ into->ignored_mac = x;
+ if ( spec != 0 ) {
+ if ( parse_allowed( spec, into ) ) {
+ fprintf( stderr, "Bad remote spec: %s\n", spec );
+ return 0;
+ }
+ }
+ int i;
+ if ( allowed.table == 0 ) {
+ // First entry.
+ allowed.table = calloc( 1, sizeof(struct Allowed*) );
+ allowed.count = 1;
+ i = 0;
+ } else {
+ i = allowed.count++;
+ allowed.table = realloc( allowed.table,
+ allowed.count * sizeof(struct Allowed*) );
+ if ( allowed.table == 0 ) {
+ fprintf( stderr, "OUT OF MEMORY\n" );
+ exit( 1 );
+ }
+ }
+ allowed.table[i] = into;
+
+ loadkey( &into->psk );
+ VERBOSE3OUT( "Allowed %s { %s }\n", into->source, show_allowed( into ) );
+ if ( is_uplink( into ) ) {
+ struct SockAddr addr;
+ set_sockaddr( &addr, &into->addr, into->port );
+ VERBOSEOUT( "Add uplink %s\n", show_allowed( into ) );
+ (void) add_remote( &addr, into );
+ }
+ return into;
+}
+
+static int parse_threads_count(char *arg) {
+ if ( ( sscanf( arg, "%u", &threads_count ) != 1 ) || threads_count < 1 ) {
+ return 1;
+ }
+ VERBOSEOUT( "** Threads count = %d\n", threads_count );
+ return 0;
+}
+
+static int parse_buffers_count(char *arg) {
+ if ( ( sscanf( arg, "%u", &buffers_count ) != 1 ) || buffers_count < 1 ) {
+ return 1;
+ }
+ VERBOSEOUT( "** Buffers count = %d\n", buffers_count );
+ return 0;
+}
+
+//** IP address parsing utility for multicast phrase
+// Return 0 if ok and 1 otherwise
+// Formats: <ipv4-address>:<port>[=keyfile]
+// The ipv4 address should be a multicast address in ranges
+// 224.0.0.0/22, 232.0.0.0/7, 234.0.0.0/8 or 239.0.0.0/8
+// though it's not checked here.
+static int parse_mcast(char *arg) {
+ static char buffer[10000];
+ int n = strlen( arg );
+ if ( n > 9000 ) {
+ return 1; // excessively large argument
+ }
+ memcpy( buffer, arg, n );
+ char *p = buffer + n - 1;
+ for ( ; p > buffer && *p != ':' && *p != '='; p-- ) { }
+ if ( *p == '=' ) {
+ mcast.psk.keyfile = p+1;
+ *p = 0;
+ loadkey( &mcast.psk );
+ for ( ; p > buffer && *p != ':' ; p-- ) { }
+ }
+ if ( *p != ':' ) {
+ fprintf( stderr, "Multicast port is required\n" );
+ return 1; // Port number is required
+ }
+ *(p++) = 0;
+ if ( inet_pton( AF_INET, buffer, &mcast.group.imr_multiaddr.s_addr )==0 ) {
+ fprintf( stderr, "Multicast address required\n" );
+ return 1;
+ }
+ char *e;
+ long int port = strtol( p, &e, 10 );
+ if ( *e != 0 || port < 1 || port > 65535 ) {
+ fprintf( stderr, "Bad multicast port\n" );
+ return 1;
+ }
+ mcast.group.imr_address.s_addr = htonl(INADDR_ANY);
+ mcast.sock.in4.sin_family = AF_INET;
+ mcast.sock.in4.sin_addr.s_addr = htonl(INADDR_ANY);
+ mcast.sock.in4.sin_port = htons( atoi( p ) );
+ return 0;
+}
+
+// Utility that sets upt the multicast socket, which is used for
+// receiving multicast packets.
+static void setup_mcast() {
+ // set up ipv4 socket
+ if ( ( mcast.fd = socket( AF_INET, SOCK_DGRAM, 0 ) ) == 0 ) {
+ perror( "creating socket");
+ exit(1);
+ }
+ if ( setsockopt( mcast.fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
+ (char *) &mcast.group, sizeof( mcast.group ) ) < 0) {
+ perror( "Joining multicast group" );
+ exit( 1 );
+ }
+ int reuse = 1;
+ if ( setsockopt( mcast.fd, SOL_SOCKET, SO_REUSEADDR,
+ &reuse, sizeof( int ) ) < 0 ) {
+ perror( "SO_REUSEADDR" );
+ exit( 1 );
+ }
+ if ( bind( mcast.fd, (struct sockaddr*) &mcast.sock.in,
+ sizeof( struct sockaddr ) ) ) {
+ fprintf( stderr, "Error binding socket!\n");
+ exit(1);
+ }
+ // Change mcast address to be the group multiaddress, and add
+ // a persistent "remote" for it.
+ mcast.sock.in4.sin_addr.s_addr = mcast.group.imr_multiaddr.s_addr;
+ add_remote( &mcast.sock, 0 );
+}
+
+// Find the applicable channel rule for a given ip:port address
+static struct Allowed *is_allowed_remote(struct SockAddr *addr) {
+ struct CharAddr ca;
+ int width = ( addr->in.sa_family == AF_INET )? 4 : 16;
+ unsigned short port;
+ int i = 0;
+ for ( ; (unsigned) i < allowed.count; i++ ) {
+ struct Allowed *a = allowed.table[i];
+ if ( a->addr.width != width ) {
+ continue;
+ }
+ set_charaddrport( &ca, &port, addr );
+ if ( a->port != 0 && a->port != port ) {
+ continue;
+ }
+ clearbitsafter( &ca, a->bits );
+ if ( memcmp( &ca, &a->addr, sizeof( struct CharAddr ) ) == 0 ) {
+ return a;
+ }
+ }
+ return 0; // Disallowed
+}
+
+// Simple PSK encryption:
+//
+// First, xor each byte with a key byte that is picked from the key
+// by means of an index that includes the prior encoding. Also,
+// compute the sum of encrypted bytes into a "magic" that is added the
+// "seed" for seeding the random number generator. Secondly reorder
+// the bytes using successive rand number picks from the seeded
+// generator.
+//
+static void encrypt(unsigned char *buf,unsigned int n,struct PSK *psk) {
+ unsigned int k;
+ unsigned int r;
+ unsigned char b;
+ unsigned int magic;
+ VERBOSE3OUT( "encrypt by %s %p\n", psk->keyfile, psk->key );
+ for ( k = 0, r = 0, magic = 0; k < n; k++ ) {
+ r = ( r + magic + k ) % psk->key_length;
+ buf[k] ^= psk->key[ r ];
+ magic += buf[k];
+ }
+ pthread_mutex_lock( &crypting );
+ srand( psk->seed + magic );
+ for ( k = 0; k < n; k++ ) {
+ r = rand() % n;
+ b = buf[k];
+ buf[k] = buf[r];
+ buf[r] = b;
+ }
+ pthread_mutex_unlock( &crypting );
+}
+
+// Corresponding decryption procedure .
+static void decrypt(unsigned char *buf,unsigned int n,struct PSK *psk) {
+ unsigned int randoms[ BUFSIZE ];
+ unsigned int k;
+ unsigned int r;
+ unsigned char b;
+ unsigned int magic = 0;
+ for ( k = 0; k < n; k++ ) {
+ magic += buf[k];
+ }
+ pthread_mutex_lock( &crypting );
+ srand( psk->seed + magic );
+ for ( k = 0; k < n; k++ ) {
+ randoms[k] = rand() % n;
+ }
+ pthread_mutex_unlock( &crypting );
+ for ( k = n; k > 0; ) {
+ r = randoms[ --k ];
+ b = buf[k];
+ buf[k] = buf[r];
+ buf[r] = b;
+ }
+ for ( k = 0, r = 0, magic = 0; k < n; k++ ) {
+ r = ( r + magic + k ) % psk->key_length;
+ magic += buf[k];
+ buf[k] ^= psk->key[r];
+ }
+}
+
+// Write a buffer data to given file descriptor (basically tap_fd in
+// this program). This is never fragmented.
+static int dowrite(int fd, unsigned char *buf, int n) {
+ int w;
+ if ( ( w = write( fd, buf, n ) ) < 0){
+ perror( "Writing data" );
+ w = -1;
+ }
+ return w;
+}
+
+// Write to the tap/stdio; adding length prefix for stdio
+static int write_tap(unsigned char *buf, int n) {
+ uint8_t tag0 = *( buf + 12 );
+ if ( tag0 == 8 ) {
+ uint16_t size = ntohs( *(uint16_t*)(buf + 16) );
+ if ( size <= 1500 ) {
+ if ( ( verbose >= 2 ) && ( n != size + 14 ) ) {
+ VERBOSEOUT( "clip %d to %d\n", n, size + 14 );
+ }
+ n = size + 14; // Clip of any tail
+ }
+ }
+ if ( stdio ) {
+ uint16_t plength = htons( n );
+ if ( dowrite( 1, (unsigned char *) &plength,
+ sizeof( plength ) ) < 0 ) {
+ return -11;
+ }
+ return dowrite( 1, buf, n );
+ }
+ return dowrite( tap_fd, buf, n );
+}
+
+// Write a packet via the given Interface with encryption as specified.
+static void write_remote(unsigned char *buf, int n,struct Remote *r) {
+ // A packet buffer
+ unsigned char output[ BUFSIZE ];
+ if ( n < 12 ) {
+ VERBOSE2OUT( "SEND %d bytes to %s\n", n, inet_stoa( &r->uaddr ) );
+ } else {
+ VERBOSE2OUT( "SEND %s -> %s to %s\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &r->uaddr ) );
+ }
+ memcpy( output, buf, n ); // Use the private buffer for delivery
+ if ( r->spec == 0 ) {
+ if ( r->uaddr.in.sa_family == 0 ) {
+ // Output to tap/stdio
+ if ( write_tap( buf, n ) < 0 ) {
+ // panic error
+ fprintf( stderr, "Cannot write to tap/stdio: exiting!\n" );
+ exit( 1 );
+ }
+ return;
+ }
+ // Fall through for multicast
+ if ( mcast.psk.keyfile ) {
+ encrypt( output, n, &mcast.psk );
+ }
+ } else if ( r->spec->psk.keyfile ) {
+ encrypt( output, n, &r->spec->psk );
+ }
+ struct sockaddr *sock = &r->uaddr.in;
+ size_t size;
+ if ( sock->sa_family == AF_INET6 ) {
+ // Note that the size of +struct sockaddr_in6+ is actually
+ // larger than the size of +struct sockaddr+ (due to the
+ // addition of the +sin6_flowinfo+ field). It results in the
+ // following cuteness for passing arguments to +sendto+.
+ size = sizeof( struct sockaddr_in6 );
+ VERBOSE2OUT( "IPv6 UDP %d %s\n",
+ udp_fd, inet_stoa( (struct SockAddr*) sock ) );
+ } else {
+ size = sizeof( struct sockaddr_in );
+ VERBOSE2OUT( "IPv4 UDP %d %s\n",
+ udp_fd, inet_stoa( (struct SockAddr*) sock ) );
+ }
+ VERBOSE2OUT( "SEND %d bytes to %s [%s -> %s]\n",
+ n, inet_stoa( (struct SockAddr*) sock ),
+ ( n < 12 )? "" : inet_mtoa( buf+6 ),
+ ( n < 12 )? "" : inet_mtoa( buf )
+ );
+ // IS sendto thread safe??
+ if ( sendto( udp_fd, output, n, 0, sock, size ) < n ) {
+ perror( "Writing socket" );
+ // Invalidate remote temporarily instead? But if it's an
+ // "uplink" it should be retried eventually...
+ // For now: just ignore the error.
+ // exit( 1 );
+ }
+}
+
+// Delete a Remote and all its interfaces
+static void delete_remote(struct Remote *r) {
+ VERBOSE2OUT( "DELETE Remote and all its interfaces %s\n",
+ inet_stoa( &r->uaddr ) );
+ unsigned int i = 0;
+ struct Interface *x;
+ Interface_LOCK;
+ for ( ; i < remotes.by_mac.size; i++ ) {
+ unsigned char *tmp = remotes.by_mac.data[i];
+ if ( tmp == 0 || tmp == (unsigned char *)1 ) {
+ continue;
+ }
+ x = (struct Interface *) tmp;
+ if ( x->remote == r ) {
+ Interface_DEL( x );
+ free( x );
+ }
+ }
+ Interface_UNLOCK;
+ Remote_DEL( r );
+ free( r );
+}
+
+// Unmap an ipv4-mapped ipv6 address
+static void unmap_if_mapped(struct SockAddr *s) {
+ if ( s->in.sa_family != AF_INET6 ||
+ memcmp( "\000\000\000\000\000\000\000\000\000\000\377\377",
+ &s->in6.sin6_addr, 12 ) ) {
+ return;
+ }
+ VERBOSE2OUT( "unmap %s\n",
+ inet_nmtoa( (unsigned char*) s, sizeof( struct SockAddr ) ) );
+ s->in.sa_family = AF_INET;
+ memcpy( &s->in4.sin_addr, s->in6.sin6_addr.s6_addr + 12, 4 );
+ memset( s->in6.sin6_addr.s6_addr + 4, 0, 12 );
+ VERBOSE2OUT( "becomes %s\n",
+ inet_nmtoa( (unsigned char*) s, sizeof( struct SockAddr ) ) );
+}
+
+// Route the packet from the given src
+static struct Interface *input_check(
+ unsigned char *buf,ssize_t len,struct SockAddr *src )
+{
+ VERBOSE2OUT( "RECV %ld bytes from %s\n", len, inet_stoa( src ) );
+ struct Remote *r = 0;
+ struct timeb now = { 0 };
+ if ( ftime( &now ) ) {
+ perror( "RECV time" );
+ now.time = time( 0 );
+ }
+ Remote_FIND( src, r );
+ if ( r == 0 ) {
+ struct Allowed *a = is_allowed_remote( src );
+ if ( a == 0 ) {
+ VERBOSEOUT( "Ignoring %s\n", inet_stoa( src ) );
+ return 0; // Disallowed
+ }
+ VERBOSEOUT( "New remote %s by %s\n", inet_stoa( src ), a->source );
+ r = add_remote( src, a );
+ //r->rec_when = now; // Set activity stamp of new remote
+ }
+ if ( len <= 12 ) {
+ // Ignore short data, but maintain channel
+ r->rec_when = now; // Update activity stamp touched remote
+ return 0;
+ }
+ // Now decrypt the data as needed
+ if ( r->spec ) {
+ if ( r->spec->psk.seed ) {
+ decrypt( buf, len, &r->spec->psk );
+ }
+ } else if ( r->uaddr.in.sa_family == 0 && mcast.psk.keyfile ) {
+ decrypt( buf, len, &mcast.psk );
+ }
+ VERBOSE2OUT( "RECV %s -> %s from %s\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &r->uaddr ) );
+ // Note: the payload is now decrypted, and known to be from +r+
+ struct Interface *x = 0;
+ // Packets concerning an ignored interface should be ignored.
+ if ( r->spec && r->spec->ignored_mac.data ) {
+ Ignored_FIND( r->spec, buf+6, x );
+ if ( x ) {
+ VERBOSE2OUT( "Dropped MAC %s from %s on %s\n",
+ inet_mtoa( buf+6 ), inet_stoa( &r->uaddr ),
+ r->spec->source );
+ return 0;
+ }
+ Ignored_FIND( r->spec, buf, x );
+ if ( x ) {
+ VERBOSE2OUT( "Dropped MAC %s to %s on %s\n",
+ inet_mtoa( buf ), inet_stoa( &r->uaddr ),
+ r->spec->source );
+ return 0;
+ }
+ }
+ Interface_FIND( buf+6, x );
+ if ( x == 0 ) {
+ // Totally new MAC. Should bind it to the remote
+ VERBOSEOUT( "New MAC %s from %s\n",
+ inet_mtoa( buf+6 ), inet_stoa( src ) );
+ x = add_interface( buf+6, r );
+ r->rec_when = now; // Update activity stamp for remote
+ x->rec_when = now;
+ return x;
+ }
+ // Seen that MAC already
+ if ( x->remote == r ) {
+ VERBOSE2OUT( "RECV %s from %s again\n",
+ inet_mtoa( buf+6 ), inet_stoa( &x->remote->uaddr ) );
+ r->rec_when = now; // Update activity stamp
+ x->rec_when = now; // Update activity stamp
+ return x;
+ }
+ // MAC clash from two different connections
+ // r = current
+ // x->remote = previous
+ VERBOSE2OUT( "RECV %s from %s previously from %s\n",
+ inet_mtoa( buf+6 ),
+ inet_stoa( &r->uaddr ),
+ inet_stoa( &x->remote->uaddr ) );
+ if ( r->spec ) {
+ // The packet source MAC has arrived on other than its
+ // previous channel. It thus gets dropped if tap/stdin is the
+ // primary channel, or the time since the last packet for that
+ // interface is less than RECENT, with different limits for
+ // broadcast and unicast.
+ int64_t dmac = DIFFB_MILLIS( &now, &x->rec_when);
+ if ( x->remote->spec == 0 || RECENT( *buf & 1, dmac ) ) {
+ if ( verbose >= 2 ) {
+ fprintf(
+ stderr,
+ "Dropped. MAC %s (%ld) from %s, should be %s\n",
+ inet_mtoa( buf+6 ), dmac,
+ inet_stoa( src ), inet_stoa( &x->remote->uaddr ) );
+ }
+ return 0;
+ }
+ // Check if previous package on the interface was recent
+ } else if ( r->uaddr.in.sa_family ) {
+ // Multicast incoming clashing with tap/stdio
+ VERBOSE3OUT( "Dropped multicast loopback\n" );
+ return 0;
+ }
+
+ // New remote takes over the MAC
+ VERBOSEOUT( "MAC %s from %s cancels previous %s\n",
+ inet_mtoa( buf+6 ), inet_stoa( src ),
+ inet_stoa( &x->remote->uaddr ) );
+ x->remote = r; // Change remote for MAC
+ // Note that this may leave the old x->remote without any interface
+ r->rec_when = now; // Update activity stamp
+ x->rec_when = now; // Update activity stamp
+ return x;
+}
+
+// Check packet and deliver out
+static void route_packet(unsigned char *buf,int len,struct SockAddr *src) {
+ struct Interface *x = input_check( buf, len, src );
+ if ( x == 0 ) {
+ return; // not a nice packet
+ }
+ if ( ( *buf & 1 ) == 0 ) {
+ // unicast
+ struct Interface *y = 0; // reuse for destination interface
+ Interface_FIND( buf, y );
+ if ( y == 0 ) {
+ VERBOSE2OUT( "RECV %s -> %s from %s without channel and dropped\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &x->remote->uaddr ) );
+ return;
+ }
+ if ( x->remote == y->remote ) {
+ VERBOSEOUT( "RECV loop for %s -> %s from %s to %s\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &x->remote->uaddr ),
+ inet_stoa( &y->remote->uaddr ) );
+ Interface_DEL( y ); // Need to see this interface again
+ return;
+ }
+ VERBOSE2OUT( "RECV route %s -> %s to %s\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &y->remote->uaddr ) );
+ write_remote( buf, len, y->remote );
+ return;
+ }
+ // broadcast. +x+ is source interface
+ // x->rec_when is not updated
+ struct timeb now = { 0 };
+ if ( ftime( &now ) ) {
+ perror( "RECV time" );
+ now.time = time( 0 );
+ }
+ VERBOSE2OUT( "BC %s -> %s from %s\n",
+ inet_mtoa( buf+6 ), inet_mtoa( buf ),
+ inet_stoa( &x->remote->uaddr ) );
+ struct Remote *r;
+ unsigned int i = 0;
+ Remote_LOCK;
+ for ( ; i < remotes.by_addr.size; i++ ) {
+ unsigned char *tmp = remotes.by_addr.data[i];
+ if ( tmp == 0 || tmp == (unsigned char *)1 ) {
+ continue;
+ }
+ r = (struct Remote *) tmp;
+ VERBOSE3OUT( "BC check %s\n", inet_stoa( &r->uaddr ) );
+ if ( r == x->remote ) {
+ VERBOSE3OUT( "BC r == x->remote\n" );
+ continue;
+ }
+ if ( r->spec && ! is_uplink( r->spec ) &&
+ DIFFB_MILLIS( &now, &r->rec_when ) > VERYOLD_MILLIS ) {
+ // remove old downlink connection
+ VERBOSEOUT( "Old remote discarded %s (%ld)\n",
+ inet_stoa( &r->uaddr ),
+ TIMEB_MILLIS( &r->rec_when ) );
+ // Removing a downlink might have threading implications
+ delete_remote( r );
+ continue;
+ }
+ // Send packet to the remote
+ // Only no-clash or to the tap/stdin
+ write_remote( buf, len, r );
+ }
+ Remote_UNLOCK;
+}
+
+// The packet handling queues
+static struct {
+ Queue full;
+ Queue free;
+} todolist;
+
+// The threadcontrol program for handling packets.
+static void *packet_handler(void *data) {
+ (void) data;
+ for ( ;; ) {
+ PacketItem *todo = (PacketItem *) Queue_getItem( &todolist.full );
+ if ( todo->fd == mcast.fd ) {
+ // Patch multicast address as source for multicast packet
+ route_packet( todo->buffer, todo->len, &mcast.sock );
+ } else {
+ if ( udp6 ) {
+ unmap_if_mapped( &todo->src );
+ }
+ route_packet( todo->buffer, todo->len, &todo->src );
+ }
+ Queue_addItem( &todolist.free, (QueueItem*) todo );
+ }
+ return 0;
+}
+
+void todolist_initialize(int nbuf,int nthr) {
+ if ( pthread_mutex_init( &todolist.full.mutex, 0 ) ||
+ sem_init( &todolist.full.count, 0, 0 ) ) {
+ perror( "FATAL" );
+ exit( 1 );
+ }
+ if ( pthread_mutex_init( &todolist.free.mutex, 0 ) ||
+ sem_init( &todolist.free.count, 0, 0 ) ) {
+ perror( "FATAL" );
+ exit( 1 );
+ }
+ Queue_initialize( &todolist.free, nbuf, sizeof( PacketItem ) );
+ for ( ; nthr > 0; nthr-- ) {
+ pthread_t thread; // Temporary thread id
+ pthread_create( &thread, 0, packet_handler, 0 );
+ }
+}
+
+// Read a full UDP packet into the given buffer, associate with a
+// connection, or create a new connection, the decrypt the as
+// specified, and capture the sender MAC address. The connection table
+// is updated for the new MAC address, However, if there is then a MAC
+// address clash in the connection table, then the associated remote
+// is removed, and the packet is dropped.
+static void doreadUDP(int fd) {
+ PacketItem *todo = (PacketItem *) Queue_getItem( &todolist.free );
+ socklen_t addrlen =
+ udp6? sizeof( todo->src.in6 ) : sizeof( todo->src.in4 );
+ memset( &todo->src, 0, sizeof( todo->src ) );
+ todo->fd = fd;
+ todo->len = recvfrom(
+ fd, todo->buffer, BUFSIZE, 0, &todo->src.in, &addrlen );
+ if ( todo->len == -1) {
+ perror( "Receiving UDP" );
+ exit( 1 );
+ }
+#ifdef GPROF
+ if ( len == 17 && memcmp( buf, "STOPSTOPSTOPSTOP", 16 ) == 0 ) {
+ exit( 0 );
+ }
+#endif
+ Queue_addItem( &todolist.full, (QueueItem*) todo );
+}
+
+// Handle packet received on the tap/stdio channel
+static void received_tap(unsigned char *buf, int len) {
+ static struct Remote *tap_remote = 0;
+ if ( tap_remote == 0 ) {
+ Remote_LOCK;
+ if ( tap_remote == 0 ) {
+ tap_remote = add_remote( 0, 0 );
+ }
+ Remote_UNLOCK;
+ }
+ PacketItem *todo = (PacketItem*) Queue_getItem( &todolist.free );
+ memcpy( (void*)todo->buffer, (void*)buf, len );
+ memcpy( (void*)&todo->src,
+ (void*)&tap_remote->uaddr,
+ sizeof( struct SockAddr ) );
+ todo->fd = 0;
+ todo->len = len;
+ Queue_addItem( &todolist.full, (QueueItem*) todo );
+}
+
+// Read up to n bytes from the given file descriptor into the buffer
+static int doread(int fd, unsigned char *buf, int n) {
+ ssize_t len;
+ if ( ( len = read( fd, buf, n ) ) < 0 ) {
+ perror( "Reading stdin" );
+ exit( 1 );
+ }
+ return len;
+}
+
+// Read n bytes from the given file descriptor into the buffer.
+// If partial is allowed, then return amount read, otherwise keep
+// reading until full.
+static int read_into(int fd, unsigned char *buf, int n,int partial) {
+ int r, x = n;
+ while( x > 0 ) {
+ if ( (r = doread( fd, buf, x ) ) == 0 ) {
+ return 0 ;
+ }
+ x -= r;
+ buf += r;
+ if ( partial ) {
+ return n - x;
+ }
+ }
+ return n;
+}
+
+// Go through all uplinks and issue a "heart beat"
+static void heartbeat(int fd) {
+ static unsigned char data[10];
+ VERBOSE3OUT( "heartbeat fd=%d\n", fd );
+ struct Remote *r;
+ unsigned int i = 0;
+ struct timeb now;
+ if ( ftime( &now ) ) {
+ perror( "HEARTBEAT time" );
+ now.time = time( 0 );
+ now.millitm = 0;
+ }
+ Remote_LOCK;
+ for ( ; i < remotes.by_addr.size; i++ ) {
+ unsigned char *tmp = remotes.by_addr.data[i];
+ if ( tmp == 0 || tmp == (unsigned char *)1 ) {
+ continue;
+ }
+ r = (struct Remote *) tmp;
+ VERBOSE3OUT( "heartbeat check %s\n", inet_stoa( &r->uaddr ) );
+ if ( r->spec && is_uplink( r->spec ) ) {
+ if ( DIFFB_MILLIS( &now, &r->rec_when ) > HEARTBEAT_MILLIS ) {
+ VERBOSE3OUT( "heartbeat %s\n", inet_stoa( &r->uaddr ) );
+ write_remote( data, 0, r );
+ }
+ }
+ }
+ Remote_UNLOCK;
+}
+
+// The threadcontrol program for issuing heartbeat packets.
+// Regular heartbeat
+static void *hearbeater_thread(void *data) {
+ (void) data;
+ for ( ;; ) {
+ sleep( HEARTBEAT );
+ heartbeat( udp_fd );
+ }
+ return 0;
+}
+
+// Tell how to use this program and exit with failure.
+static void usage(void) {
+ fprintf( stderr, "Packet tunneling over UDP, multiple channels, " );
+ fprintf( stderr, "version 0.2.5\n" );
+ fprintf( stderr, "Usage: " );
+ fprintf( stderr,
+ "%s [-v] [-4] [-B n] [-T n] [-m mcast] [-t tap] port [remote]+ \n",
+ progname );
+ exit( 1 );
+}
+
+// Open the given tap
+static int tun_alloc(char *dev, int flags) {
+ struct ifreq ifr;
+ int fd, err;
+ if ( ( fd = open( "/dev/net/tun", O_RDWR ) ) < 0 ) {
+ perror( "Opening /dev/net/tun" );
+ return fd;
+ }
+ memset( &ifr, 0, sizeof( ifr ) );
+ ifr.ifr_flags = flags;
+ if ( *dev ) {
+ strcpy( ifr.ifr_name, dev );
+ }
+ if ( ( err = ioctl( fd, TUNSETIFF, (void *) &ifr ) ) < 0 ) {
+ perror( "ioctl(TUNSETIFF)" );
+ close( fd );
+ return err;
+ }
+ strcpy( dev, ifr.ifr_name );
+ return fd;
+}
+
+static void doreadTap() {
+ if ( stdio ) {
+ if ( input.end == 0 ) {
+ uint16_t plength;
+ int n = read_into( 0, (unsigned char *) &plength,
+ sizeof( plength ), 0 );
+ if ( n == 0 ) {
+ // Tap/stdio closed => exit silently
+ exit( 0 );
+ }
+ input.end = ntohs( plength );
+ input.cur = 0;
+ }
+ size_t e = input.end - input.cur;
+ unsigned char *p = input.buffer + input.cur;
+ if ( input.end > BUFSIZE ) {
+ // Oversize packets should be read and discarded
+ if ( e > BUFSIZE ) {
+ e = BUFSIZE;
+ }
+ p = input.buffer;
+ }
+ input.cur += read_into( 0, p, e, 1 );
+ } else {
+ input.end = doread( tap_fd, input.buffer, BUFSIZE );
+ input.cur = input.end;
+ }
+ if ( input.end == input.cur ) {
+ VERBOSE3OUT( "TAP/stdio input %d bytes\n", input.end );
+ if ( input.end <= BUFSIZE ) {
+ received_tap( input.buffer, input.end );
+ }
+ input.end = 0; // Ready for next packet
+ }
+ // End handling tap
+}
+
+// MAXFD is Finalized before multi-threading, and then remains constant.
+static int MAXFD;
+
+// This is the main packet handling loop
+static int packet_loop() {
+ // A packet buffer for receiving UDP
+ unsigned char buffer[ BUFSIZE ];
+ int n;
+ //time_t next_heartbeat = time(0);
+ int cycle = 0; // which channel to check first
+ while( 1 ) {
+ fd_set rd_set;
+ FD_ZERO( &rd_set );
+ if ( mcast.fd ) {
+ FD_SET( mcast.fd, &rd_set );
+ }
+ FD_SET( udp_fd, &rd_set );
+ if ( udp6 ) {
+ FD_SET( udp_fd, &rd_set );
+ }
+ if ( tap ) { // tap/stdio
+ FD_SET( tap_fd, &rd_set );
+ }
+ n = select( MAXFD, &rd_set, NULL, NULL, NULL );
+ VERBOSE3OUT( "select got %d\n", n );
+ if ( n < 0 ) {
+ if ( errno == EINTR ) {
+ continue;
+ }
+ perror("select");
+ exit(1);
+ }
+ if ( n == 0 ) {
+ continue;
+ }
+ // Process input with alternating priority across channels
+ for ( ;; cycle++ ) {
+ if ( cycle >= 3 ) {
+ cycle = 0;
+ }
+ if ( cycle == 0 && FD_ISSET( udp_fd, &rd_set ) ) {
+ // Check and process UDP socket
+ doreadUDP( udp_fd ) ;
+ cycle = 1;
+ break;
+ }
+ if ( cycle == 1 && FD_ISSET( mcast.fd, &rd_set ) ) {
+ // Check and process multicast socket
+ doreadUDP( mcast.fd ) ;
+ cycle = 2;
+ break;
+ }
+ if ( cycle == 2 && FD_ISSET( tap_fd, &rd_set ) ) {
+ // Check and process tap/stdio socket
+ doreadTap( tap_fd, buffer );
+ cycle = 0;
+ break;
+ }
+ }
+ }
+ return 0;
+}
+
+// Application main function
+// Parentheses mark optional
+// $* = (-v) (-4) (-B n) (-T n) (-m mcast) (-t port) (ip:)port (remote)+
+// remote = ipv4(/maskwidth)(:port)(=key)
+// remote = ipv6(/maskwidth)(=key)
+// remote = [ipv6(/maskwidth)](:port)(=key)
+// ip = ipv4 | [ipv6]
+int main(int argc, char *argv[]) {
+ int port, i;
+ progname = (unsigned char *) argv[0];
+ ///// Parse command line arguments
+ i = 1;
+#define ENSUREARGS(n) if ( argc < i + n ) usage()
+ ENSUREARGS( 1 );
+ // First: optional -v, -vv or -vvv
+ if ( strncmp( "-v", argv[i], 2 ) == 0 ) {
+ if ( strncmp( "-v", argv[i], 3 ) == 0 ) {
+ verbose = 1;
+ } else if ( strncmp( "-vv", argv[i], 4 ) == 0 ) {
+ verbose = 2;
+ } else if ( strncmp( "-vvv", argv[i], 5 ) == 0 ) {
+ verbose = 3;
+ } else {
+ usage();
+ }
+ i++;
+ ENSUREARGS( 1 );
+ }
+ // then: optional -4
+ if ( strncmp( "-4", argv[i], 2 ) == 0 ) {
+ udp6 = 0;
+ i++;
+ ENSUREARGS( 1 );
+ }
+ // then: optional -B buffers
+ if ( strncmp( "-B", argv[i], 2 ) == 0 ) {
+ ENSUREARGS( 2 );
+ if ( parse_buffers_count( argv[i+1] ) ) {
+ usage();
+ }
+ i += 2;
+ ENSUREARGS( 1 );
+ }
+ // then: optional -T threads
+ if ( strncmp( "-T", argv[i], 2 ) == 0 ) {
+ ENSUREARGS( 2 );
+ if ( parse_threads_count( argv[i+1] ) ) {
+ usage();
+ }
+ i += 2;
+ ENSUREARGS( 1 );
+ }
+ // then: optional -m mcast
+ if ( strncmp( "-m", argv[i], 2 ) == 0 ) {
+ ENSUREARGS( 2 );
+ if ( parse_mcast( argv[i+1] ) ) {
+ usage();
+ }
+ i += 2;
+ ENSUREARGS( 1 );
+ }
+ // then: optional -t tap
+ if ( strncmp( "-t", argv[i], 2 ) == 0 ) {
+ ENSUREARGS( 2 );
+ tap = argv[i+1];
+ i += 2;
+ ENSUREARGS( 1 );
+ }
+ // then: required port
+ if ( sscanf( argv[i++], "%d", &port ) != 1 ) {
+ fprintf( stderr, "Bad local port" );
+ usage();
+ }
+ // then: any number of allowed remotes
+ struct Allowed *last_allowed = 0;
+ for ( ; i < argc; i++ ) {
+ if ( last_allowed ) {
+ // optionally adding ignored interfaces
+ if ( strncmp( "-i", argv[i], 2 ) == 0 ) {
+ ENSUREARGS( 2 );
+ if ( parse_ignored_interfaces( argv[i+1], last_allowed ) ) {
+ usage();
+ }
+ i += 1;
+ continue;
+ }
+ }
+ if ( ( last_allowed = add_allowed( argv[i] ) ) == 0 ) {
+ fprintf( stderr, "Cannot load remote %s. Exiting.\n", argv[i] );
+ exit( 1 );
+ }
+ }
+ // end of command line parsing
+
+ // Initialize buffers and threads
+ if ( threads_count == 0 ) {
+ threads_count = 5;
+ }
+ if ( buffers_count < threads_count ) {
+ buffers_count = 2 * threads_count;
+ }
+ todolist_initialize( buffers_count, threads_count );
+
+ MAXFD = 0;
+ // Set up the tap/stdio channel
+ if ( tap ) {
+ // set up the nominated tap
+ if ( strcmp( "-", tap ) ) { // Unless "-"
+ tap_fd = tun_alloc( tap, IFF_TAP | IFF_NO_PI );
+ if ( tap_fd < 0 ) {
+ fprintf( stderr, "Error connecting to interface %s!\n", tap);
+ exit(1);
+ }
+ VERBOSEOUT( "Using tap %s at %d\n", tap, tap_fd );
+ MAXFD = tap_fd;
+ stdio = 0;
+ // pretend a zero packet on the tap, for initializing.
+ received_tap( 0, 0 );
+ } else {
+ // set up for stdin/stdout local traffix
+ setbuf( stdout, NULL ); // No buffering on stdout.
+ tap_fd = 0; // actually stdin
+ MAXFD = 0;
+ stdio = 1;
+ }
+ } else {
+ stdio = 0;
+ }
+ // Set up the multicast UDP channel (all interfaces)
+ if ( mcast.group.imr_multiaddr.s_addr ) {
+ setup_mcast();
+ unsigned char *x = (unsigned char *) &mcast.group.imr_multiaddr.s_addr;
+ VERBOSEOUT( "Using multicast %s:%d at %d\n",
+ inet_nmtoa( x, 4 ), ntohs( mcast.sock.in4.sin_port ),
+ mcast.fd );
+ if ( mcast.fd > MAXFD ) {
+ MAXFD = mcast.fd;
+ }
+ }
+ // Set up the unicast UPD channel (all interfaces)
+ if ( udp6 == 0 ) {
+ // set up ipv4 socket
+ if ( ( udp_fd = socket( AF_INET, SOCK_DGRAM, 0 ) ) == 0 ) {
+ perror( "creating socket");
+ exit(1);
+ }
+ struct sockaddr_in udp_addr = {
+ .sin_family = AF_INET,
+ .sin_port = htons( port ),
+ .sin_addr.s_addr = htonl(INADDR_ANY),
+ };
+ if ( bind( udp_fd, (struct sockaddr*) &udp_addr, sizeof(udp_addr))) {
+ fprintf( stderr, "Error binding socket!\n");
+ exit(1);
+ }
+ VERBOSEOUT( "Using ipv4 UDP at %d\n", udp_fd );
+ } else {
+ // set up ipv6 socket
+ if ( ( udp_fd = socket( AF_INET6, SOCK_DGRAM, 0 ) ) == 0 ) {
+ perror( "creating socket");
+ exit(1);
+ }
+ struct sockaddr_in6 udp6_addr = {
+ .sin6_family = AF_INET6,
+ .sin6_port = htons( port ),
+ .sin6_addr = IN6ADDR_ANY_INIT,
+ };
+ if ( bind( udp_fd, (struct sockaddr*) &udp6_addr, sizeof(udp6_addr))) {
+ fprintf( stderr, "Error binding socket!\n");
+ exit(1);
+ }
+ VERBOSEOUT( "Using ipv6 UDP at %d\n", udp_fd );
+ }
+ if ( udp_fd > MAXFD ) {
+ MAXFD = udp_fd;
+ }
+ MAXFD++ ;
+ // If not using stdio for local traffic, then stdin and stdout are
+ // closed here, so as to avoid that any other traffic channel gets
+ // 0 or 1 as its file descriptor. Note: stderr (2) is left open.
+ if ( ! stdio ) {
+ close( 0 );
+ close( 1 );
+ }
+ VERBOSE2OUT( "Socket loop tap=%d mcast=%d udp=%d max=%d\n",
+ tap_fd, mcast.fd, udp_fd, MAXFD );
+
+ // Start heartbeater thread
+ pthread_t thread; // Temporary thread id -- not used
+ pthread_create( &thread, 0, hearbeater_thread, 0 );
+
+ // Handle packets
+ return packet_loop();
+}